microsoft
basic compiler
documentation

The Microsoft BASIC Compiler and associated
software are accompanied by the following
documents:

BASIC-80 REFERENCE MANUAL

provides syntax and detailed explanations
of all Microsoft BASIC statements and
functions.

BASIC COMPILER USER'S MANUAL

gives the BASIC compiler command format,
error messages, and general directions
for the use of the compiler.

MICROSOFT UTILITY SOFTWARE MANUAL
describes the command formats for the
MACRO-80 Assembler and LINK-80 Linking
Loader, and provides a reference for
MACRO-80 pseudo-operations.

BASIC-80
Reference
Manual

This manual is a reference far Microsoft's BASIC-80
language, release 5.0 and later.

There are significant differences between the 5.0
release of BASIC-80 and the previous releases
(release 4.51 and earlier). If you have programs
written under a previous release of BASIC-80,
check Appendix A for new features in 5.0 that may
affect execution.

Information in this document is subject to change
without notice and does not represent a commitment
on the part of Microsoft. The software described
in this document is furnished under a license
agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the
terms of the agreement.

©Microsoft, 1979

To report software bugs or errors in the documentation,
please complete and return the Problem Report at the
back of this manual.

8101-510-05

BASIC-80 Interpreter and Compiler Addendum Release 5.1

The following changes should be noted in the BASIC-80 Reference Manual and BASIC
Compiler User's Manual.

BASIC-80 Reference Manual Version 5.1

2.53 RANDOMIZE
The prompt string has been changed from:

Random Number Seed (0-65529)?

to
Random Number Seed (-32768 to 32767) ?

3.14a INKEY$
Format: INKEY$

Action: Retums either a one character string containing a character read from
the terminal or a null string if no character is pending at the
terminal. No characters wili be echoed and all characters are passed
through to the program except for Control-C which terminates the
program. (In the compiler version Control-C is also passed through to
the program.)

Example: 1000 Timed Input Subroutine
1010 RESPONSE$=""
1020 FOR %=1 TO TIMELIMIT%
1030 A$=INKEY$: IF LEN(A$)=0 THEN 1060
1040 IF ASC(A$)=13 THEN TIMEOUT%=0 : RETURN
1050 RESPONSE$=RESPONSE$+A$
1060 NEXT %
1070 TIMEOUT%=1 : RETURN

3.41 VAL

The VAL function now strips leading blanks, tabs, and linefeeds from
the argument string. For example,

V AL(!! _3!!)

now returns -3 instead of 0.

3.42 VARPTR(#<file nuimbery)

For random files VARPTR returns the address of the FIELD buffer
instead of the disk 1/O buffer.

L.1 OPERATIONAL DIFFERENCES

The following statements and commands are not implemented and will
generate an error message:

AUTO CLEAR CLOAD CSAVE CONT DELETE EDIT
LIST LLIST RENUM SAVE LOAD MERGE NEW
COMMON

L.2 LANGUAGE DIFFERENCES

The COMMON statement will be implemented in a future release of the
BASIC compiler; however, its implementation will be different from the BASIC
interpreter's version. The COMMON statement will be similar to FORTRAN's
COMMON statement.

The USRn functions are significantly different from the interpreter
versions. The argument to the USR function is ignored and an integer result is
retumed in the HL registers. It is recommended that USR functions be replaced
by the CALL statement.

The CHAIN and RUN statements have been implemented in their simplest
form only; i.e., CHAIN filename$. For CP/M, the default extension is .COM.
BASCOM programs can chain to any COM file; however, the command line
information is not automatically passed. Command line information can be
passed by POKEing the appropriate information into the command line area.

Currently, the ERR and ERL functions always return integer values;

therefore, programs having errors in lines numbered between 32768 and 65535
will return a negative ERL value. This will be changed in a future release.

PRINT <list>, USING "format"; <list>
is not a valid print statement format. The only allowed formats are:

[LIPRINT [#<file number>,) USING <string expr>; <list >
BASIC Comepiler User's Manual
1.1.1 BASIC Compilation Switches
The /Z switch tells the compiler to use Z80 opcodes whenever possible. The
generated code is listed using 8080 opcodes except in those cases where Z80

opcodes have been used.

The /T switch tell the compiler to use BASIC-80 Version 4.51 execution
conventions in the following cases:

1. FOR/NEXT loops are always executed at least one time.
2, TAB, SPC, POS, and LPOS preform according to 4.51 conventions.
3. Automatic floating point to integer conversions use truncation

instead of rounding except in the case where a floating point
number is being converted to an integer in an INPUT statement.

BASIC
COMPILER
User's Manual

BASIC Compiler Command Format and Switches
Procedures for Using the BASIC Compiler
Sample Compilation

Error Messages

© Microsoft, 1979

8102-510-01

CHAPTER

CHAPTER

CHAPTER

Microsoft
BASIC Compiler User's Manual

CONTENTS

1 BASIC Compiler Command Scanner
sl Command Format

ala] BASIC Compilation Switches
2 Using the BASIC Compiler

1 Procedure

“l Sample Compilation

3 Error Messages

3.1 BASIC Compiler Error Messages
x B BASIC Runtime Error Messages

CHAPTER 1

BASIC COMPILER COMMAND SCANNER

1.1 COMMAND FORMAT

To run the BASIC Compiler, type BASCOM followed by a
carriage return. (For users with 32K CP/M systems, type
BASCOM32 instead of BASCOM. BASCOM32 is a small loader
program which loads BASCOM into the user TPA.) BASIC will
return the prompt "*", indicating it is ready to accept
cormmands. To tell the BASIC compiler what to compile and
with which options, it is necessary to input a "command
string," which 1is read by the compiler's command scanner.
The general format of a BASIC compiler command string is:

objprog-dev:filename.ext,list-dev:filename.ext=
source-dev:filename.ext

objprog-dev:
The device on which the object program is to be written.

list=-dev:
The device on which the program listing is written.

source-dev:
The device from which the source-program input to BASIC is
obtained. If a device name is omitted, it defaults to the

currently selected drive.
The available device names with CP/M are:

A:, B:, C:, D¢ Disk drives

HSR: High speed reader

LST: Line printer

T Y= Teletype or CRT
filename.ext

The filename and filename extension of the object program
file, the 1listing file, and the source file. Filename
extensions may be omitted. The default filename extensions
with CP/M are:

R

BASIC Compiler User's Manual Page 1-2

BAS BASIC source file

MAC MACRO-80 source file
REL Relocatable object file
PRN Listing file

COM Absolute file

FOR FORTRAN-80 source file
COB COBOL-80 source file

Either the object file or the listing file or both may be
omitted. 1f neither a listing file nor an object file 1is
desired, place only a comma to the left of the equal sign.
If the names of the object file and the listing file are
omitted, the default is the name of the source file.

Examples:

*=TEST Compile the program TEST.BAS
and place the object in TEST.REL

* TTY:=TEST Compile the program TEST,.BAS
and list program on the terminal.
No object is generated.

*TESTOBJ=TEST.BAS Compile the program TEST.BAS
and put object in TESTOBJ.REL

*TEST,TEST=TEST Compile TEST.BAS, put object in
TEST.REL and listing in TEST.PRN

* =TEST.BAS Compile TEST.BAS but produce

no object or listing file. Useful
for checking for errors.

) . BASIC Compilation Switches

A switch on the end of a compiler command string specifies a
special parameter to be used during compilation. Switches
are always preceded by a slash (/). More than one switch
may be used in the same command. The available switches
are:

Switch Action

/E The /E switch tells the compiler that the progran
contains the ON ERROR GOTO statement. If a RESUME
statement other than RESUME <line number> is used
with +the ON ERROR GOTO statement, use /X instead
(see below). To handle ON ERROR GOTO properly in
a compiled environment, BASIC must generate some
extra code for the GOSUB and RETURN statements.
Therefore, do not use this switch unless your
program contains the ON ERROR GOTO statement. The

PN

BASIC Compiler User's Manual Page 1-=3

/X

/N

/D

/2

/S

JE switch also causes line numbers to be included
in the binary file, so runtime error messages will
include the number of the line in error.

The /X switch tells the BASIC compiler that the
program contains one or more RESUME, RESUME NEXT,
or RESUME 0 statements. The /E switch is assumed
when the /X switch is specified. To handle RESUME
statements properly in a compiled environment, the
compiler must relinquish certain optimizations.
Therefore, do not use this switch unless your
program contains RESUME statements other than
RESUME <line number>. The /X switch also causes
line numbers to be included in the binary file, so
runtime error messages will include the kumber of
the line in error.

The /N switch prevents listing of the generated
code in symbolic notation. If this switch is not
set, the source listing produced by the compiler
will contain the object code generated by each
statement.

The /D switch causes debug/checking code to Dbe
generated at runtime. This switch must be set if
you want to use TRON/TROFF. The BASIC compiler
generates somewhat larger and slower code in order
to perform the following checks:

1. Arithmetic overflow. All arithmetic
operations, integer and floating point, are
checked for overflow and underflow.

2. Array bounds. - All array references are
checked to see if the subscripts are within
the bounds specified in the DIM statement.

3. Line numbers are included in the generated
binary so that runtime errors can indicate the
statement which contains the error.

4. RETURN is checked for a prior GOSUB.

The /2 switch tells the compiler to use Z80
opcodes whenever possible. The generated code is
listed using 8080 opcodes except in those cases
where Z80 opcodes have been used.

The /S switch forces the compiler to write long
quoted strings (i.e., more than 4 characters) to
the binary file as they are encountered. This
allows large programs with many quoted strings to
compile in less memory. However, there are two
disadvantages:

BASIC Compiler User's Manual Page 1-4

/4

/€

Examples:

1. Memory space is wasted if identical, 1long
quoted strings appear in the program.

2. Code generated while the /S switch 1is set
cannot be placed in ROM.

The /4 switch allows the compiler to wuse the
lexical conventions of the Microsoft 4.51 BASIC
interpreter. That is, spaces are insignificant,
variables with embedded reserved words are
illegal, variable names are restricted to two
significant characters, etc. This feature is
useful if you wish to compile a source progran
that was coded without spaces, and contains lines
such as

FORI=ATOBSTEPC

Without the /4 switch, the compiler would assign
the variable "ATOBSTEPC" to the variable FORI.
Wwith the /4 switch, it would recognize it as a FOR
statement. I+ is recommended that such programs
be edited to the 5.0 lexical standards, rather
than using the /4 switch. Delimiting reserved
words with spaces causes no increase in the
generated code and greatly improves readability.

The /C switch tells the compiler to relax line
numbering constraints. When /C is specified, line
numbers may be in any order, OT they may be
eliminated entirely. Lines are compiled normally,
but of course cannot be targets for GOTOs, GOSUBs,
etc. While /C 4is set, the underline character
causes the remainder of the physical line to be
ignored, and the next physical line is considered
to be a continuation of the current logical 1line.
NOTE: /C and /4 may not be used together.

* TTY:=MYPRG/N Compile MYPRG.BAS and list the

source program on the terminal but
without the generated code. Put
the object file in MYPRG.REL.

*=TEST/E Compile TEST.BAS. The source
file contains an ON ERROR GOTO
statement. Put the object file
in TEST.REL.

*=BIGGONE/D Compile BIGGONE.BAS and put

the object file in BIGGONE.REL.
Check for overflow and out-of-
bound array subscripts, and include
line numbers in the object file.

P

CHAPTER 2

USING THE BASIC COMPILER

2.1 PROCEDURE

The following steps give the procedure for creating,
compiling, and saving BASIC programs using the BASIC
compiler and LINK-80 loader on the CP/M operating systen.

1'

Create a source file

Create a BASIC source file using the C?/M editor or
Microsoft's EDIT-80 Text Editor or Microsoft's
BASIC-80 interpreter. Filenames are up to eight
characters long, with 3-character extensions.
B2SIC source filenames should have the extension
BAS. (MACRO-80 source £filenames should have the
extension MAC.)

Error check

Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. This will

help eliminate the necessity of recompiling later
due to syntax errors or other easy-to-£fix errors.
One way to check for errors is to run the program
on Microsoft's BASIC-80 interpreter.

Another way to perform the error check is to co
compilation without generating an object or list
file. For example, if your BASIC source file
called MAX1.BAS, type the following:

8

a
g
s

[

A>BASCOM ,=MAX1/N

This command compiles the source £file MAXT1.BAS
without producing an object or listing ile. (For
users with 32K CP/M systems, tvpe BASC M32 insteac
of BASCOM. BASCOM32 is a small locader program which

loads BASCOM into the user TPA.)

1
0

If necessary, return to the editor (or interpretsr)
and correct any errors.

Compile the source file
To compile the edited source file and produce an
object and listing file, type

BASIC Compiler User's Manual Page 2-2

A>BASCOM MAX1,MAX1=MAX1

The compiler will create a REL (relocatable) {file
calleé MAX1.REL and a listing file called MAX1.PRN.

Load, Execute and Save the Preogram
mo load the program MAX1.REL into memory and execute

it, type
A>L80 MAX1/G

To exit LINK-80 and save a memory image of the
object ccde, tyre

A>L80 MAX1/E

When LINK-80 exits, three numbers will be printed:
the starting address for execution of the program,
the end address of the program and the numnber of
256-byte pages used. For example

[210C 3012 48]

Use the CP/M SAVE command to save a memory image.
The number of pages used is the argument for SAVE.
For example

A>SAVE 48 MAX1.COM

NOTE

CP/M always saves memory starting at 100H
and jumps to 100H to begin execution. Do
not use /P or /D to set the origin oI the
program or data area to 100E, unless
program execution will actually begin at
100H.

The CP/M version of LINK-80 is capable of creating
coM files by using the /N switch, (See LINK-80
Switches, Utility Software Manual) . In our
example,

A>L80 MAX1,MAX1/N/E

loads and links MAX1.REL, creates.the file MAX1.CCM
for direct execution, and exits to CP/M.

An object code £file has now been saved on the d&isk
under the name specified with the LINK-80 /N switch
or the CP/M SAVE command (in this case MAX1). To
execute the program simply type the program name

A>MAX1

>

BASIC Compiler User's Manual Page 2-3

5

CP/M Command Lines

CP/M command lines and files are supported; i.eq;
a BASIC, COBOL-80, FORTRAN-80, MACRO-80 or LINK-80
command line may be placed in the same line with
the CP/M run command. For example, the command

A>BASCOM =TEST

causes CP/M to load and run the BASIC compiler,
which then compiles the program TEST.BAS and
creates the file TEST.REL. This is equivalent to
the following series of commands:

A>BASCOM
*=TEST
A>

P

BASIC Compiler User's Manual LS QAyS <« =

2.2 SAMPLE COMPILATION

BASCOM Y5.0 - Copyright

0014 0007

* %

0014 0007

* %

0014 0007
* %
0014 0007
* %*

0014 006D
* %

* %
%* %

001D 006D
* *

* %
* %
%* %
0026 006F
* %
* %
* %
* %
%* %
* %
* %
* %
* *x
* %
* %
%* %
%* %
* %
%* %
* %
* %
* %
%* %
%* *
* %k
%* %
* %*
%* %
* %
* *
* %
* %
* %
* %
* %
%* %
* *
* %

00100
0014'L00100:

00200
0014'L00200:

00300
0014'L00300:

00400
0014'L00400:

00500
0014'L00500:
0017
001A'"

00600
001D'L00600:
0020
0023
0026'I00001:

00700
0026'L00700:
0029
002A'
002B'
goz2cC'
002F'

0030
0031'
0032
033"
0034’
0037
0038
0039
oo3cC!
003D'
003E'
003F'
0040'
0043
0044’
0045"
0046
0047'
004A'"
004B'
004E'
004F'
0050
0053
0054"
0055
0056
0057'

1979 (C) bv MICROSOFT - 11776 3ytes rres
! SAMPLE BASIC COMPILATION

DEFINT I-N,S

DIM S(50)

S(0) =1 ¢ 8(1) =1
LXI H,0001
SELD S%

SELD S$%+0002
FOR I=0 TO 24

LXI K,0000

SHLD I%

JMP I00000

S(2*(I+1))=S(2*(I+1)-1)+S(2*(I+1)~2)+3
LHLD I%

DAD
DAD
PUSH
LXI
DAD
MOV
INX
MoV
XCHG
SHLD
POP
PUSH
LX
DAD
MOV
INX
MOV
LHLD
DAD
INX
INX
INX
SHLD
POP
LXI
DAD
PUSH
LELD
XCHG
POP
MOV
INX
MOV

,S%+0002

2

-
3
»

o
—

1))
oo

ox
—

e~

.
(@
N

n
ae
+
o
o
o
=N

’

HMENoUUDNANNMOP¥IUNMMuUImnd UmWOo 0 minm
=

o
(\S]

LM
t

o

i, [' “’*

BASIC Compiler User's Manual

0058 006F
* %

* %
% %
% %
* %
%* %
* %
* *
* %
* %
* %
* %

006F O0O06F
* %

* %
* %
* %
* %

007E 0Q6F
* %

00800
0058 '1.00800:
005B"
005C"
005F 'I00000:
Q05F'
0062"
0065"
0066
0067
ooeat
006B"
006C'I00002:
00900
006F 'L00900:
072"
0075"
0078"
007B"

Q07E"

00000 Fatal Errors
11151 Bytes Free

The address in the left-hand column is the
The address in the next column is the current data

address.
address.

Note the examples of

lines 500

and 700,

NEXT I

LHLD I%

INX H

SHLD I%

LHLD I%

LXI D,FFE?7
MOV A,H

RAL

uC 100002
DAD D

DAD H

JC I00001
PRINT "ANSWER =";S (50)
CALL $PROA

LXI H,<const>
CALL $PVID
LHLD S%+0064
CALL $PV2C
CALL $END

common
and

optimization in line 700.

subexpression
constant

folding

current

elimination
and peephole

Page 2-5

program

in

CHAPTER 3

ERROR MESSAGES

3.1 BASIC COMPILER ERROR MESSAGES

The following errors may occur while a program is compiling.
The BASIC compiler outputs the two-character code for the
error, along with an arrow. The arrow indicates where in
the 1line the error occurred. In those cases where the
compiler has read ahead before it discovered the error, the
arrow points a few characters beyond the error, or at the
end of the line.

The error codes are as follows:

FATAL ERRORS

Error

Syntax Error. Caused by one of the following:

Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Invalid
Missing
Missing
Missing
Missing
Missing
Missing
Missing
Missing
Missing
Missing

argument name

assignment target
constant format

debug request

DEFxxx character specification
expression syntax
function argument 1list
function name

function formal parameter
separator

format for statement number
subroutine syntax
character

AS

equal sign

GOTO or GOSUB

comma

INPUT

line number

left parenthesis

minus sign

operand in expression
right parenthesis

AT,

BASIC Compiler User's Manual

oM

5Q

™

i &

BS

LL

ucC

ov
/0

DD

Missing semicolon

Name too long

Expected GOTO or GOSUB

String assignment required
String expression required
String varible required here
Illegal syntax

Variable required here

Wrong number of arguments
Formal parameters must be unique
Single variable only allowed
Missing TO

Illegal FOR loop index variable
Missing THEN

Missing BASE

Illegal subroutine name

Out of Memory
Array too big
Data memory overflow
Too many statement numbers
Program memory overflow

Sequence Error
Duplicate statement number
Statement out of sequence

Type Mismatch
Data type conflict
Variables must be of same type

Too Complex
Expression too complex
Too many arguments in function call
Too many dimensions
Too many variables for LINE INPUT
Too may variables for INPUT

Bad Subscript
Illegal dimension value
Wrong number of subscripts
Line Too Long
Unrecognizable Command
Statement unrecognizable
Command not implemented
Math Overflow

Division by Zero

Array Already Dimensioned

Page 3-2

BASIC Compiler User's Manual Page 3-3

FN FOR/NEXT Error
FOR loop index variable already in use
FOR without NEXT
NEXT without FOR

FD Function Already Defined
UF Function Not Defined
WE WHILE/WEND Error

WHILE without WEND
WEND without WEILE

/E Missing "/E" Switch

/X Missing "/X" Switch

WARNING ERRORS
ND Array Not Dimensioned
ST Statement Ignored

Statement ignored
Unimplemented command

BASIC Compiler User's Manual Page 3-4

3.2 BASIC RUNTIME ERROR MESSAGES

The following errors may occur while a compiled program is
executing. The error numbers match those issued by the
BASIC-80 interpreter. The compiler runtime systen prints
long error messages followed by an address, unless /D, /E,
or /X is specified. In those cases the error message is
followed by the number of the 1line in which the error
occurred.

Number Message

2 Syntax error
A line is encountered that contains an incorrect
sequence of characters in a DATA statement.

3 RETURN without GOSUB
A RETURN statement is encountered for which there 1is
no previous, unmatched GOSUB statement

4 Out of data
A READ statement is executed when there are no DATA
statements with unread data remaining in the progran.

5 Illegal function call
A parameter that is out of range is passed to a math
or string function. An FC error may also occur as the
result of:

1. a negative or unreasonably large subscript

2. a negative or zero argument with LOG

3. a negative argument to SQR

4, a negative mantissa with a non-integer exponent

5. a call to a USR function for which the starting
address has not yet been given

6. an improper argument to ASC, CHRS, MID$, LEFTS,
RIGHT$, INP, OUT, WAIT, PEEK, POKE, TAB, SPC,
STRINGS, SPACE$, INSTR, or ON...GOTO

7. a string concatenation that is longer than 255
characters

6 Floating overflow or integer overflow
The result of a calculation is too large to be
represented in BASIC-80's number format. If underflow
occurs, the result is zero and execution continues
without an error.

whtn, t

BASIC Compiler User's Manual Page 3-5

11

14

20

21

50

51

52

53

54

Subscript out of range
An array element is referenced with a subscript that
is outside the dimensions of the array.

Division by zero

A division by zero is encountered in an expression, or
the operation of involution results in zero being
raised to a negative power. Machine infinity with the
sign of the numerator is supplied as the result of the
division, or positive machine infinity is supplied as
the result of the involution, and execution continues.

Out of string space
String variables exceed the allocated amount of string

space.

RESUME without error
A RESUME statement 1is encountered before an error
trapping routine is entered.

Unprintable error

An error message is not available for the error
condition which exists. This is usually caused by an
ERROR with an undefined error coce.

Field overflow

A FIELD statement is attempting to allocate more bytes
than were specified for the record length of a random
file.

Internal error ‘

An internal malfunction has occurred in Disk BASIC-80.
Report to Microsoft the conditions under which the
message appeared.

Bad file number

A statement or command references a file with a file
number that is not OPEN or is out of the range of file
numbers specified at initialization.

File not found
A LOAD, KILL or OPEN statement references a file that
does not exist on the current disk.

Bad file mode

An attempt is made to use PUT, GET, or LOF with a
sequential file, to LOAD a random file or to execute
an OPEN with a file mode other than I, O, or R.

BASIC Compiler User's Manual Page 3-6

99

S:7

58

61

62

63

64

67

File already open

A sequential output mode OPEN is issued for a file
that is already open; or a KILL is given for a file
that is open.

Disk I/0 error

An I/0 error occurred on a disk I/O operation. It 1is
a fatal error, i.e., the operating system cannot
recover from the error.

File already exists
The filename specified in a NAME statement is
jdentical to a filename already in use on the disk.

Disk full
All disk storage space is in use.

Input past end

An INPUT statement is exeucted after all the data in
the file has been INPUT, or for a null (empty) file.
To avoid this error, use the EOF function to detect
the end of file.

Bad record number

In a PUT or GET statement, the record number is either
greater than the maximum allowed (32767) or equal to
zero.

Bad file name

An illegal form is used for the filename with LOAD,
SAVE, KILL, or OPEN (e.g., a filename with too many
characters).

Too many files
An attempt is made to create a new file (using SAVE or
OPEN) when all 255 directory entries are full.

